
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading the Binary Stream

Insertion and Stream Extraction Operators

(cont.)
Overloading the Stream Extraction (>>) Operator
• The stream extraction operator function operator>> (Fig. 10.4,

lines 21–30) takes istream reference input and
PhoneNumber reference number as arguments and returns an
istream reference.

• Operator function operator>> inputs phone numbers of the form
• (800) 555-1212

• When the compiler sees the expression
• cin >> phone

• In line 16 of Fig. 10.5, the compiler generates the non-member
function call

• operator>>(cin, phone);

• When this call executes, reference parameter input (Fig. 10.4, line
21) becomes an alias for cin and reference parameter number
becomes an alias for phone.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading the Binary Stream

Insertion and Stream Extraction Operators

(cont.)

• The operator function reads as strings the
three parts of the telephone number into the
areaCode (line 24), exchange (Line 26) and line
(line 28) members of the PhoneNumber object referenced
by parameter Number.

• Stream manipulator setw limits the number of characters
read into each string.

• The parentheses, space and dash characters are skipped by
calling istream member function ignore (Fig. 10.4,
lines 23, 25 and 27), which discards the specified number of
characters in the input stream (one character by default).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading Stream Insertion and

Stream Extraction Operators (cont.)

• Function operator>> returns istream

reference input (i.e., cin).

• This enables input operations on

PhoneNumber objects to be cascaded with

input operations on other PhoneNumber

objects or on objects of other data types.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading Stream Insertion and

Stream Extraction Operators (cont.)

Overloading the Stream Insertion (<<) Operator

• The stream insertion operator function (Fig. 10.4, lines 11-16)
takes an ostream reference (output) and a const
PhoneNumber reference (number) as arguments and returns
an ostream reference.

• Function operator<< displays objects of type
PhoneNumber.

• When the compiler sees the expression
• cout << phone

 in line 22 if Fig. 10.5, the compiler generates the non-member
function call

• operator<<(cout, phone);

• Function operator<< displays the parts of the telephone
number as strings, because they’re stored as string objects.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading the Binary Stream

Insertion and Stream Extraction Operators

(cont.)

Overloaded Operators as Non-Member

friend Functions

• The functions operator>> and

operator<< are declared in

PhoneNumber as non-member, friend

functions.

• They’re non-member functions because the

object of class PhoneNumber is the

operator’s right operand.
©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading the Binary Stream

Insertion and Stream Extraction Operators

(cont.)

Why Overloaded Stream Insertion and
Stream Extraction Operators Are
Overloaded as Non-Member Functions

• The overloaded stream insertion operator (<<)
is used in an expression in which the left
operand has type ostream &, as in cout <<
classObject.

• To use the operator in this manner where the
right operand is an object of a user-defined
class, it must be overloaded as a non-member
function.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading the Binary Stream

Insertion and Stream Extraction Operators

(cont.)

• Similarly, the overloaded stream extraction operator
(>>) is used in an expression in which the left
operand has type istream &, as in cin >>
classObject, and the right operand is an object of
a user-defined class, so it, too, must be a non-member
function.

• Each of these overloaded operator functions may
require access to the private data members of the
class object being output or input, so these overloaded
operator functions can be made friend functions of
the class for performance reasons.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.6 Overloading Unary Operators

• A unary operator for a class can be overloaded as a non-
static member function with no arguments or as a non-
member function with one argument that must be an object
(or a reference to an object) of the class.

• A unary operator such as ! may be overloaded as a non-
member function with one parameter.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.7 Overloading the Unary Prefix and

Postfix ++ and -- Operators

• The prefix and postfix versions of the

increment and decrement operators can all be

overloaded.

• To overload the increment operator to allow

both prefix and postfix increment usage, each

overloaded operator function must have a

distinct signature, so that the compiler will be
able to determine which version of ++ is

intended.

• The prefix versions are overloaded exactly as

any other prefix unary operator would be.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.7 Overloading the Unary Prefix and

Postfix ++ and -- Operators (cont.)

• Suppose that we want to add 1 to the day in Date object d1.

• When the compiler sees the preincrementing expression ++d1,
the compiler generates the member-function call

• d1.operator++()

• The prototype for this operator function would be
• Date &operator++();

• If the prefix increment operator is implemented as a non-member
function, then, when the compiler sees the expression ++d1, the
compiler generates the function call

• operator++(d1)

• The prototype for this operator function would be declared in the
Date class as

• Date &operator++(Date &);

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.7 Overloading the Unary Prefix and

Postfix ++ and -- Operators (cont.)
Overloading the Postfix Increment Operator

• Overloading the postfix increment operator presents a challenge,
because the compiler must be able to distinguish between the
signatures of the overloaded prefix and postfix increment operator
functions.

• The convention that has been adopted in C++ is that, when the
compiler sees the postincrementing expression d1++, it generates
the member-function call

• d1.operator++(0)

• The prototype for this function is
• Date operator++(int)

• The argument 0 is strictly a ―dummy value‖ that enables the
compiler to distinguish between the prefix and postfix increment
operator functions.

• The same syntax is used to differentiate between the prefix and
postfix decrement operator functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.7 Overloading the Unary Prefix and

Postfix ++ and -- Operators (cont.)

• If the postfix increment is implemented as a non-member
function, then, when the compiler sees the expression d1++, the
compiler generates the function call

• operator++(d1, 0)

• The prototype for this function would be
• Date operator++(Date &, int);

• Once again, the 0 argument is used by the compiler to distinguish
between the prefix and postfix increment operators implemented
as non-member functions.

• The postfix increment operator returns Date objects by value,
whereas the prefix increment operator returns Date objects by
reference—the postfix increment operator typically returns a
temporary object that contains the original value of the object
before the increment occurred.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

